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The number of wildlife collisions on the Swedish railroads is increasing at a rate 

unmatched by the development of wildlife populations and expansion of the railroad 

traffic. It is therefore essential to identify areas where the yearly risk of collisions is 

great (blackspots), to be able to allocate mitigating efforts in areas where they are 

most essential and effective.  The aim of this report was to develop a method to iden-

tify blackspots for roe deer and moose collisions on railroads. Incidents are reported 

by segments, which are partitioned sections of the railroads. I defined a segment as a 

blackspot when it had continuously high number of incidents.  Four different sets of 

blackspots were created. Segments were defined as blackspots if they were 10 or 13 

years above the 60th percentile of the national distribution of incidents per km, or 10 

or 13 years above the 70th percentile. The segments within these four sets where then 

ranked. To evaluate the different sets, I performed separate logistic regression for 

each set of defined blackspots where the dependent variables were the blackspots (1) 

and segments below the 50th percentile for all years (0). To further analyse the differ-

ence of the sets, receiver operating characteristics (ROC) - curves were calculated for 

each final model which is a statistical tool used to assess a logistic model’s ability to 

differentiate between, in this case, blackspots and low-frequency segments. For both 

species, 13 years above the 70th percentile resulted in models with the greatest ability 

to discriminate between blackspots and low-frequency segments and held the highest 

number of incidents per total length of railroads. Future analysis of which percentile 

to use and how many years the segment should be above that percentile is needed. 

However, I have developed a method to identify the segments that are in the biggest 

need of mitigating efforts. The strength of my approach to identify blackspots is that 

it can be adjusted to different needs and purposes, and is flexible to suit many differ-

ent goals.  
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Abstract 



 
 

Antalet kollisioner med vilt ökar längs Sveriges järnvägar vilket bland annat orsakar eko-

nomiska förluster till följd av reparation av tåg och tågräls. Det orsakar även psykologiska 

besvär för lokförare som inte har möjlighet att bromsa, samt förlust av jaktbara arter och 

onödigt lidande bland vilt. Samhället står därför inför utmaningen att minska dessa kollis-

ioner genom att identifiera de områden där åtgärder kommer att vara mest effektiva. Områ-

den där viltkollisioner ofta förekommer med höga frekvenser kan kallas för blackspots. Syf-

tet med denna rapport är att identifiera viktiga aspekter för definiering av blackspots såväl 

som att skapa en metod som kan ta vara på dessa aspekter längs med järnväg.  

Trafikverkets databas OFELIA innehåller bl.a. incidenter med vilt som förväntas störa 

tågtrafiken längs järnvägar. För åren 2001 till 2016 sammanställde jag antalet incidenter per 

tågsträcka och art. Totalt rapporterades 62 786 incidenter fördelade på 38 däggdjurs-arter. 

De vanligaste arterna inblandade i kollisioner var rådjur och älg följt av ren, tamdjur, hjort 

(kronhjort och dovhjort) och vildsvin. Antalet incidenter såväl som antalet sträckor som det 

rapporterats incidenter på har stadigt ökat under den aktuella tidsperioden. 

Blackspots för rådjur och älg definierades genom att välja ut de sträckor som under flest 

antal år haft en särskilt hög olycksbelastning sett till antal olyckor per km per år i Sverige. 

Mer i detalj valde jag fyra olika kombinationer av blackspots, 10 eller 13 år över 60 per-

centilen av det årliga antalet olyckor per km för alla sträckor, eller 10 eller 13 år över 70 

percentilen. Dessa kombinationer utvärderades sedan med hjälp av en logistisk regression 

där blackspots jämfördes med sträckor med få olyckor för att se hur väl blackspotsen kunde 

identifiera miljövariabler som leder till en ökad mängd kollisioner. De definierade 

blackspotsen rankades sedan utefter ett set av kriterier för att kunna belysa de sträckor där 

det största behovet av åtgärder finns. För att se hur väl modellerna kunde skilja mellan 

blackspots och kontroll, alltså sträckor med få olyckor, användes ett statistiskt verktyg kallat 

Receiver Operating Characteristics (ROC).  

Genom att välja ut de sträckor som låg minst 13 år över 70 percentilen identifierades de 

sträckor som hade högst antal kollisioner per km. Denna studie har pekar ut ett set av tåg-

sträckor med ett upprepat högt antal kollisioner där motverkande åtgärder bör koncentreras. 

Studien har även belyst vikten av att fokusera på vilka kriterier som ska inkluderas vid de-

finition av blackspots. Genom att automatisera de steg som genomförts i denna studie finns 

goda förutsättningar för att snabbt kunna identifiera framtida konfliktsträckor mellan tåg-

trafik och djur i Sverige.   

Populärvetenskaplig sammanfattning 
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Four thousand trains are in movement on Swedish railroads every day (Trafikverket, 

2016a). On average, there are about 30 ungulates per every 10 km2 in Sweden, and 

roughly one individual every 577 meter (Älgskadefondsföreningen, 2010). When 

driving 90 km/h a train would therefore pass one individual every 23 second. Not 

surprisingly, about 3000 collisions with wildlife and train are reported each year 

(Seiler et al., 2011). The railroad and its traffic affects wildlife in various ways; 

death by collision, barrier affect, removal of habitat (Baofa et al., 2006; KušTa et 

al., 2014; van der Ree et al., 2015) as well as humans; costs caused by damage, 

search for injured animals, decrease of available game, stress for train drivers (Grey, 

2015; Seiler et al., 2011; Storaas et al., 2005).  

In Scandinavia, train-wildlife collisions (TWC) are increasing in numbers un-

matched by changes in wildlife populations, infrastructure or traffic (Rolandsen et 

al., 2015; Seiler et al., 2011; Trafikverket, 2011). Even so, collisions with wildlife 

on railroad-systems receive very little attention compared to vehicle-wildlife colli-

sions on roads (Popp and Boyle, 2017). According to a news article of the Swedish 

Television one collision with moose is estimated to cost up to 1 million SEK, and a 

way of delineating areas where mitigating efforts may be most cost-effective is in-

creasingly important as collisions are increasing in number (svt, 2017). 

Blackspots can be defined as segments of infrastructure where TWC occur more 

frequent than elsewhere (Infrastructure, 2014; Shilling and Waetjen, 2015). Black-

spots can be used to assign segments where different actions can be tested for their 

ability to decrease incidents with wildlife, such as wildlife crossings, fencing, elec-

tronic systems to deter animals, playing of recorded natural wildlife alarming etc. 

(Babińska-Werka et al., 2015; van der Ree et al., 2015). Different methods to iden-

tify aggregations of collisions have been employed, such as KDE (kernel density 

estimation), KDE+ (modified kernel density estimation which identifies significant 

clusters), kriging (estimates a surface from the given points of collisions) and Getis 

Ord, Gi* (identifies cluster of high and low values) (Bíl et al., 2013; Ramp et al., 

2005; Shilling and Waetjen, 2015; Snow et al., 2005; Thakali et al., 2015). These 

1 Introduction 
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methods produce a set of segments that can be denoted blackspots. In some cases, 

blackspots are analysed further regarding spatial and temporal trends to further aid 

recommendations to mitigate the risk of collisions. However, these methods use 

wildlife collisions registered with coordinates or distances from a reference point 

along roads. TWCs in Sweden are reported at stations or by segments of varying 

lengths. 

There is a need to identify segments with reoccurring high numbers of TWCs to 

be able to decide where implemented mitigating efforts might have the largest eco-

logical and economic benefit. The aim of this project was therefore to develop an 

identification system for blackspots regarding train-wildlife incidents. 1) What cri-

teria can be used for setting a limit and at what limit is a segment a blackspot; 2) 

How sensitive is the set limit? 
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2.1 Railroad network 

My study is based on major railroads that are managed by the Swedish Transport 

Administration (STA) (figure 1). In total, there are 14 000 km of railroads which 

are operated by STA of which 80% are electrified and about a third are double-

tracked (Trafikverket, 2016b). A major part of the railroads are repeatedly cleared 

of trees at a distance of about 20 meter at either side of the track to prevent damage 

from falling trees (Trafikverket, 2017a). Few railroads are fenced against wildlife, 

but fences to prevent human suicides are expanding and may eventually also affect 

TWC in urban areas (Trafikverket, 2017b). 

 
Figure 1. The Swedish railroad operated by STA (Trafikverket, 2016b) 

2 Method 
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2.2 Database of incidents 

Train drivers are obliged to report incidents that may cause problems to train traffic 

to a train dispatcher at the STA where they are compiled in a database (OFELIA). 

Such incidents include, among others, collisions with and observations of dead, in-

jured or otherwise trapped or troubled wild and domestic animals on the railroad. 

Incidents are positioned with reference to one but mostly to two adjacent train sta-

tions (start and end-point of a railroad segment). I used OFELIA records on animal-

related incidents from the years 2001-2016. 

Data from 2001 to 2012 had previously been processed for analysis (Seiler et al., 

2011). I complemented with data from 2013 to 2016. Due to the nature of the OFE-

LIA database, the available records needed to be cleaned and validated in several 

steps before they could be used in further analysis. Information on species and type 

of incident is often not coded but explained in descriptive text. To extract relevant 

data from these reports, I used queries in R (R Core Team, 2016) and Rstudio (Rstu-

dio, 2012) and sorted records with respect to species and type of incident. 

2.2.1 Sorting of stations and segments 

The database contains information about station and segments for each reported in-

cident. The driver usually provides information regarding the station from which the 

train most recently departed, and the nearest or one of the upcoming stations the 

train will pass. If a segment is not defined by two neighboring stations, it would 

stretch over several consecutive stations and thus contain several smaller segments. 

To avoid overlapping segments, several segments were either altered or removed. 

For example, if an incident were reported between station A and D, that segment 

would be given an ID of A-D (figure 2). Thus, ignoring the intermediate stations B 

and C, where other incidents may have been reported for segments such as A-B, A-

C and B-C. To decide whether to combine all reports in the longest segment A-D or 

to ignore and remove the longest one, I compared the sum of incidents of the differ-

ent segments. For example, in a case where A-B had 20 incidents, B-C had 10 and 

A-C had 2, I would keep A-B and B-C since they contain the largest number of 

incidents. If A-C would have had 40 incidents, and therefore a larger sum than of 

20+10, A-B and B-C would have been merged into A-C. With this procedure, I 

removed 200 segments from further analysis including 417 incidents (0.7%), and 

merged 178 segments into longer composite segments. The Inlandsbanan railroad 

was removed from the final set of segments since it is trafficked by only two rather 

slow trains per day and is not part of the regular rail network. Various (often very 

short) private railroads were neither included in the analyses. 
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Figure 2. In the database OFELIA, the driver usually provides information regarding the station from 

which the train most recently departed, and the nearest or one of the upcoming stations the train will 

pass when reporting an incident. If a segment is not defined by two neighboring stations, it would 

stretch over several consecutive stations and thus contain several smaller segments. To avoid overlap-

ping segments, several segments were either altered or removed. This figure shows an example of this 

mentioned overlap where red dots are stations, grey lines are segments with the given ID in grey letters. 

The black line represents the actual railroad. 

2.3 Identifying blackspots 

2.3.1 Limit for blackspot identification 

Out of the 38 species reported in OFELIA, roe deer (Capreolus capreolus) and 

moose (Alces alces) represented the largest part, as reported earlier (Seiler et al., 

2011). Only these two species were therefore selected for further analysis of black-

spots. From the reported cases, I calculated incident frequencies per species, km and 

year for each of the defined railway segments.  

I considered a segment being a blackspot if the incident frequencies were above 

a specified limit during a specified number of years. Segments without any reported 

incidents during the entire time series were removed from analysis to since the lack 

of incidents could be due to several reasons such as being outside of the geograph-

ical range of the species. This resulted in 909 segments with roe deer incidents and 

876 segments with moose incidents. The lower limit in TWC frequency was set to 

the 60th or 70th percentiles of the distribution of all incidents nationwide. A chal-

lenge was to identify sufficiently many blackspots to allow for logistic regression 
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analyses, while avoiding identifying too many segments for the results being appli-

cable in practise. This was done by assessing the number of segments included with 

different percentiles and years above that percentile (figure 3). The number of years 

above the limit was set to either a minimum of 10 years (60% of the available time-

series) or 13 years (80% of the available time-series). This resulted in four different 

classifications of blackspots for each of roe deer and moose, 10 or 13 years above 

the 60th percentile as well as 10 or 13 years above the 70th percentile. Each set of 

blackspots was given a unique name to differentiate between the 8 different sets. 

The first letter indicates species (R=roe deer, M=moose), the first two numbers rep-

resent the number of years above the limit, 10 or 13, followed by two numbers rep-

resenting the 60th or 70th percentiles. For example, R1060 is roe deer, where the 

limit is at least 10 years above the set limit of the 60th percentile.  

I also identified segments that had a low frequency of incidents as a control to 

be able to evaluate explanatory variables in a logistic regression. I choose a limit of 

below the 50th percentile for all years as non-blackspots.  

 
 

 

Figure 3. The number of railroad-segments generated dependent on the set limit (55, 60, 70 and 80th 

percentile of the yearly number of incidents) and number of years above the limit (5, 8, 10, 13 and 16 

years above the limit) for moose from the year 2001 to 2016.  
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After the four sets of blackspots had been identified I ranked the segments defined 

as blackspots according to a combined index of the: 

• average number of incidents per km and year, 

• maximum value of number of incidents per km for a year,  

• number of years with incidents and  

• number of years above the limit used for that set 

2.4 Evaluating blackspots  

I wanted to study the effect of the four different limits on the predictability of black-

spots using a set of explanatory variables. I used logistic regression analysis where 

the dependent binary variable was the defined blackspots (as 1) and the defined low-

frequency segments as controls (as 0). The explanatory variables (table 1) were cho-

sen based on previous research on ecology of roe deer and moose (Morellet et al., 

2013; Seiler et al., 2011; Storaas et al., 2005). All explanatory variables were quan-

tified in ArcGIS within either a 2 000 m buffer (for landscape variables such as 

habitat composition) or a 200 m buffer (for factors influencing animal movement 

and behaviour in immediate vicinity to the railroad). Snow data was extrapolated 

from downloaded information on snow depth from 368 SMHI stations (SMHI, 

2017). 
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Table 1: Overview of the chosen explanatory variables for the logistic regression for comparison of blackspots to low-frequency segments for roe deer and moose. Each 

explanatory variable is associated with an expected effect based on earlier studies and ecology of the species. Range, average and standard deviation of the variables 

are based on the extrapolated data from ArcGIS for the segments used in the analysis. 

Variable Unit for analysis Distance from rail-

road 

Source Expected effect 

(Moose/Roe deer) 

Range Average Standard deviation 

Roads Length (km)/km rail 200 m Lantmäteriet (+/+) 0 – 56.19 km 11.9 km 7.21 km 

Watercourses Length (km)/km rail 2000 m Lantmäteriet (+/+) 0 - 191 km 

 

41.4 km 26.9 km 

Water surface Coverage (arcsin%) 2000 m Lantmäteriet (+/+) 0 – 29.60 km2 4.20 km2 4.60 km2 

Power lines Length (km)/km rail 2000 m Lantmäteriet (+/+) 0 - 129.9 km 

 

14.4 km 11.5 km 

Forest Coverage (arcsin%) 2000 m Lantmäteriet (+/-) 0 – 194.83 km2 25.70 km2 19.9 km2 

Open land Coverage (arcsin%) 2000 m Lantmäteriet (-/+) 0 – 61.36 km2 12.2 km2 10.4 km2 

Fen Coverage (arcsin%) 2000 m Lantmäteriet (+/-) 0 – 81.73 km2 3.48 km2 6.44 km2 

Urban centers Coverage (arcsin%) 2000 m Lantmäteriet (-/+) 0 – 32.66 km2 6.15 km2 5.93 km2 

Snow Average depth 

(m)/km rail 

2000 m SMHI (+/-) 0 – 0.321 m 0.0947 m 0.0692 m 

Trains per day Count 200 m STA (both/both) 0 – 997 trains/day 59.3 trains/day 78.3 trains/day 

Felling Number of years 

with felling 

2000 m Skogsstyrelsen (+/no effect) 0 – 17.56 km2 3.02 km2 2.80 km2 

Level crossing Count / km rail 200 m STA (-/-) 0 – 120 18.9 335 

Over/under crossing Count / km rail 200 m STA (+/+) 0 – 39 4.12 5.40 

Powerline crossing Count / km rail 200 m Lantmäteriet (+/+) 0 – 18 1.96 2.55 
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I initially evaluated the Spearman’s correlation matrix in R to avoid multicollinear-

ity between explanatory variables. If a pair of explanatory variables held a correla-

tion value above 0.65, one of the variables were removed based on correlation with 

other explanatory variables as well as the believed importance for the species. The 

variance influence factor (VIF) for the explanatory variables in different models 

were calculated in order to identify additional variables that needed to be removed 

due to collinearity (Montgomery et al., 2012). The variable with the highest VIF-

value was removed, and this process was repeated until all remaining explanatory 

variables had VIF-values below two (Zuur et al., 2010). 

The remaining variables were defined as the full model, and model selection was 

performed with the aid of the dredge function in MuMIn, a package in R (Barton, 

2016). All possible combinations of the explanatory variables in the full model were 

combined and ranked according to AICc. The variables present in all models with a 

difference in AICc<2 to the highest ranking model (lowest AICc) were included in 

the final model (Burnham et al., 2002). 

A receiver operating characteristic plot (ROC) with the associated area under the 

curve (AUC) was calculated for each of the eight final models to evaluate the power 

of the four different sets in discriminating between blackspots and controls, i.e., 

segments with less than 50th percentile of incidents, (Fellows, 2012). ROC plots the 

ratio of correctly identified blackspots to all true blackspots, i.e., the true positive 

rate (TPR, i.e., the ratio of correctly identified blackspots to all true blackspots) in 

relation to the false positive rate (FPR, i.e., the ratio of controls incorrectly classified 

as blackspots to all controls) for different probability thresholds to define the black-

spots (different probabilities of a segment being a blackspot, where 50% is com-

monly used for a confusion matrix) (Park et al., 2004). A high AUC-value indicates 

a model which is good at separating blackspots from controls, with a value of 0.8 

being an excellent discriminator (Hosmer et al., 2013; Park et al., 2004). However, 

the same AUC can still be quite different with regards to the ability to discriminate 

with different cut-off thresholds since the same size of area does not indicate the 

same shape. The shape of the area is important as it says a lot about the model’s 

ability to identify blackspots and low-frequency segments individually. It is there-

fore important to combine the AUC-value with a visual analysis. 
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3.1 Descriptive statistics 

There were 62 786 incidents with 38 species registered from 2001 to 2016 on 1328 

segments with a total length of 10 492 km. The average length of a segment was 

10.53 km with a standard deviation of 7.87 km. The longest segment was 62.33 km, 

and the shortest was 1 km. The highest number of incidents was noted in 2010, with 

5 591 wildlife incidents. For ungulates, the overall trend is increasing for both num-

bers of incidents as well as the numbers of segments (table 2, figure 4 and 5). Roe 

deer and moose were the most common species involved in incidents, representing 

35.5 % and 26.8 % respectively. The five most common ungulates (roe deer, moose, 

reindeer, deer (fallow deer and red deer), and wild boar) stand for 84.2% of all re-

ported incidents, with a total of 52 844 incidents. A clear majority of incidents with 

ungulates were collisions (90%), followed by animals observed on track (5%), ani-

mals detected as carcasses (3%), other (1%) and injured animals (<1%).  

 

 

3 Results 
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Figure 4. The indexed trend of number of incidents with moose, roe deer and ungulates on the railroad 

in Sweden from year 2001 to 2016 with the baseline for the index at 2001. 

 

 

 
Figure 5.  Indexed trends of the number of reported incidents with ungulates from 2001 to 2016 and 

the number of railroad-segments reported on by year from 2001 to 2016 with the baseline for the in-

dex at 2001. An increase can be observed for both indexes, where the number of reported incidents 

has a steeper slope. 
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Table 2. The number of animal-related incidents registered in OFELIA by species from year 2001 to 2016 where the total number of incidents is sorted in ascending 

order. OFELIA is a database where all incidents which can possibly affect the train traffic in Sweden are reported. 

Species 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Grand Total 

Roe deer 1006 1137 1025 1146 967 1166 929 1212 1402 1807 1326 1566 1522 1725 1939 2426 22301 

Moose 879 898 843 861 683 948 852 1036 1107 1733 1178 1196 1223 1076 1155 1188 16856 

Reindeer 304 347 386 510 682 660 628 884 637 796 553 734 615 698 783 704 9921 

Domesticated animal 471 456 461 416 392 447 436 503 489 643 610 291 46 46 10 5 5722 

Deer 48 52 53 60 61 109 67 103 120 175 183 196 172 222 206 255 2082 

Wild boar 10 16 24 18 30 38 43 74 132 146 110 165 177 179 245 277 1684 

Raptor 29 37 34 33 49 52 67 83 83 131 108 175 130 185 229 218 1643 

Unknown 32 11 15 23 20 38 27 31 48 63 86 163 164 160 118 159 1158 

Small game 17 16 27 21 18 25 34 33 35 55 33 36 80 78 105 114 727 

Bird 20 22 22 17 17 21 28 19 37 22 26 45 39 50 43 50 478 

Bear 1 5 5 5 8 1 11 5 7 9 9 5 4 10 3 6 94 

Lynx 3 4 2 4 4 5 9 6 7 5 4 5 3 9 5 6 81 

Wolf 0 1 2 1 1 1 1 2 2 5 3 2 1 3 3 3 31 

Mouflon 0 0 1 1 0 0 0 0 1 1 0 0 0 0 2 2 8 

Grand Total 2820 3002 2900 3116 2932 3511 3132 3991 4107 5591 4229 4579 4176 4441 4846 5413 62786 
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3.2 Defined blackspots 

The number of segments identified as blackspots decreased with a higher sat limit 

of selection criteria. For roe deer, 276 (R1060), 163 (R1070), 140 (R1360) and 67 

(R1370) segments were defined as blackspots with a total length of 2 712 km, 1 574 

km, 1 469 km, and 671 km respectively (table 3). For moose, 288 (M1060), 134 

(M1070), 132 (M1360) and 46 (M1370) segments were defined as blackspots with 

a total length of 3 247 km, 1 477 km, 1 508 km, and 539 km respectively (table 3).  

There was a large variation in the average number of incidents among the black-

spots identified as top ten for roe deer (table 4), but the average number of incidents 

varied little for the top ten blackspots for moose (table 5). 

Table 3. Final generated sets of blackspots for roe deer and moose dependent on the set limit and 

number of years above the set limit (column 1). The letter represents the species, the two first numbers 

represents the number of years above the set limit and the two latter numbers represents the limit 

(percentile of distribution of incidents for each year).  

Set of black-

spots 

Number of 

segments 

Average num-

ber of incident 

per km and 

year 

Total length in 

km (percent of 

total) 

Incident counts 

(percent of to-

tal) 

Incident 

count/Total 

length 

R1060 276 0.30 2712 (25%) 12579 (70%) 4.63 

R1070 163 0.37 1574 (15%) 8987 (50%) 5.60 

R1360 140 0.38 1469 (14%) 8432 (47%) 5.63 

R1370 67 0.50 671 (6%) 4982 (28%) 7.42 

M1060 288 0.20 3247 (31%) 10092 (72%) 3.10 

M1070 134 0.26 1477 (14%) 5998 (42%) 4.06 

M1360 132 0.25 1508 (14%) 6039 (43%) 4.04 

M1370 46 0.32 539 (5%) 2815 (20%) 5.22 
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Figure 6. Segments identified as blackspot by 10 years above the 60th percentile of the distribution of 

incidents each year (R1060), and 13 years above the 70th percentile (R1370) for roe deer, where colour 

indicates ranking. The ranking was decided by the average number of incidents, maximum number of 

incidents reported for a year, the number of years with incidents and number of years above the set 

percentile. The top ten blackspots are marked in black with a number representing the order. 
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Figure 7. Segments identified as blackspot by 10 years above the 60th percentile of the distribution of 

incidents each year (M1060), and 13 years above the 70th percentile (M1370) for moose, where colour 

indicates ranking. The ranking was decided by the average number of incidents, maximum number of 

incidents reported for a year, the number of years with incidents and number of years above the set 

percentile. The top ten blackspots are marked in black with a number representing the order. 
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Table 4. Top ten blackspots for roe deer on the Swedish railroad (R1370) 

Segment Name of segment Average (inci-

dent/km and year) 

Number of years 

with incidents 

Number of years 

above limit 

Ranking Length (km) 

BMB-TRM Blomberg - Trolmen 1.26 16 16 1 6.36 

VH-Ä Vegeholm - Ängelholm 1.07 16 16 2 5.86 

RBK-TRM Råbäck – Trolmen 0.94 15 15 3 2.46 

BSÄ-ÅVG 

Bjärkaby-Säby – 

Viresjö 0.96 16 16 

4 18.6 

FHM-HLK Forshem - Hällekis 0.80 16 16 5 3.81 

LMM-SRP Lemmeström - Skurup 0.88 16 16 6 8.83 

BMB-KLL Blomberg - Källby 0.75 14 14 7 3.58 

HLK-RBK Hällekis - Råbäck 0.77 14 14 8 4.08 

HSR-LYD Hasslerör - Lyrestad 0.67 16 16 9 9.68 

LNÅ-ÄSR Lugnås - Äskekärr 0.68 16 16 10 6.00 

Table 5. Top ten blackspots for moose on the Swedish railroad (M1370) 

Segment Name of segment Average (inci-

dent/km and year) 

Number of years 

with incidents 

Number of years 

above limit 

Ranking Length 

(km) 

KID-LRD Kinnared – Landeryd 0.44 16 14 1 11.6 

AK-SOA Abisko östra – Storda-

len 

0.52   16 16 2 10.5 

SBY-SVT Norra Sunderbyn – 

Sävast 

0.45 16 16 3 8.54 

HFJ-TDJ Hamrångefjärden – 

Trödje 

0.48 16 16 4 12.5 

AVS-MJV Avafors – Morjärv 0.43 16 15 5 23.7 

LRD-SPH Landeryd – Skeppshult  0.49 16 16 6 8.11 

HGÖ-KM Högsjö – Kilsmo 0.49 16 16 7 11.0 

BST-FFS Bastuträsk – 

Finnforsfallet 

0.42 16 13 8 15.5 

RHM-ULY Rämshyttan - Ulvshyt-

tan  

0.40 16 15 9 8.93 

HDN-RBO Holmsveden - Röstbo 0.44 15 15 10 6.96 
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3.3 Regression analysis of blackspots 

AUC increased for both species with a higher set limit (table 6 and 7). The number 

of included explanatory variables was the same in all roe deer models, while it de-

creased in the moose models as the set limit increased. Snow was the only explana-

tory variable included in all final models for roe deer. In moose, fen, forest, over/un-

der crossing, powerline, and road were included in all final models (table 6 and 7). 

Table 6. Final set of explanatory variables included in the four different sets of blackspots for roe deer. 

An explanatory variable was included if it occurred in all models closer than two to the model with 

the lowest AICc. Variables in bold were included in all final models for all different sets of blackspots 

(snow).  

Model Included factors Signifi-

cance 

Estimate Std. Error AICc – AICc of highest 

ranked model 

AUC 

R1060 Snow *** -39.9 4.80 327.72 – 326.5 0.8066 

 Train . -0.140 0.0750   

R1070 Snow *** -42.3 5.91 257.6 – 257.6 0.8280 

 Road . -0.678 0.346   

R1360 Snow *** -45.8 6.75 233.8 – 232.9 0.8295 

 Train * -0.220     0.0980   

R1370 Snow *** -43.8      7.76 167 – 166.1 0.8535 

 Urban centres ** -3.76      1.33   
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Table 7. Final set of explanatory variables included in the logistic regression models for the four 

different sets of blackspots for moose. An explanatory variable was included if it occurred in all mod-

els’ closer than two to the model with the lowest AICc, the final model was therefore not always the 

model with the lowest AICc. Variables in bold were included in all final models for all four sets of 

blackspots (fen, forest, over/under crossing, powerlines, roads). 

Model Included factors Signifi-

cance 

Estimate Std. Error AICc – AICc of high-

est ranked model 

AUC 

M1060 fen ** 10.7 3.38 443.2 – 443.1 0.8645 

 forest *** 4.40 0.641   

 Over/under crossing *** -0.95 0.166   

 powerline crossing * -1.20 0.494   

 powerline *** 0.44 0.131   

 road *** -1.75 0.287   

 train ** -0.415 0.137   

M1070 fen *** 15.1 4.02 297.9 – 297.9 0.8840 

 forest *** 3.76 0.790   

 Over/under crossing *** -0.785 0.200    

 powerline * 0.366 0.143   

 road ** -1.19 0.408   

 snow * 5.57 2.59    

 urban centres * -3.61 1.75   

M1360 fen *** 13.3 3.99 287.5 – 286.3 0.8892 

 forest *** 3.79 0.732   

 Over/under crossing *** -1.00 0.217   

 powerline . 0.274 0.152   

 road *** -2.14 0.378   

 train . -0.29 0.161   

M1370 fen *** 13.3 3.99 287.0 – 285.8 0.8888 

 forest *** 3.77 0.732   

 Over/under crossing *** -1.00 0.217   

 powerline . 0.275 0.151   

 road *** -2.13 0.377    

 train . -0.290 0.161   
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The AUC increased with a higher sat limit for both roe deer and moose (table 6 and 

7). All models for both species were better at separating defined low-frequency seg-

ments than blackspots which can be seen by observing the black line in figure 8 to 

15, where closeness to the upper axis rather than the left indicates a model which is 

good at discriminating with a high TPR (true positive rate, the number of blackspots 

correctly classified as blackspots/all blackspots at different probability thresholds). 

When the TPR was low the models for roe deer were no better than a random dis-

criminator. This indicates that the model’s ability to discriminate between the two 

outcomes with a high probability threshold were weak, and it is first with a low 

probability threshold that the model is a good discriminator.  
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Figure 8. ROC (Receiver operating characteristics) plots for model R1060 (a), R1070 (b), R1360 (c), and R1370 (d) where the black line shows the relation between 

TPR (true positive rate, sensitivity) and FPR (false positive rate, 1-Specificity). When the black line is close to the red line the model is no better than a random 

discriminator to differentiate between blackspot and controls, low-frequency segments. The closer the black line is to the upper and left axis, the better it is at discrim-

inating between the two outcomes. The AUC value indicates how good the model is at discriminating between the different outcomes, were 0,8 is abbreviated as very 

good.  

a) b) 

c) d) 
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Figure 9. ROC (Receiver operating characteristics) plots for model M1060 (a), M1070 (b), M1360 (c), and M1370 (d) where the black line shows the relation between 

TPR (true positive rate, sensitivity) and FPR (false positive rate, 1-Specificity). When the black line is close to the red line the model is no better than a random 

discriminator to differentiate between blackspot and controls, low-frequency segments. The closer the black line is to the upper and left axis, the better it is at discrim-

inating between the two outcomes. The AUC value indicates how good the model is at discriminating between the different outcomes, were 0,8 is abbreviated as very 

good.  

a) b) 

d) c) 
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I have in this report developed a method to identify blackspots on the Swedish rail-

road, highlighting the railroad segments which repeatedly had a high frequency of 

incidents for a major part of the studied time-series. For both species analysed in 

this report, the ability to differ blackspots from low-frequency segments increased 

with a higher set limit (regarding set percentile of the yearly distribution of the num-

ber of incidents as well as number of years above the percentile). However, which 

limit to choose is also a practical question and should be decided in cooperation with 

STA and other interested parties. I recommend the highest limit, 1370, as it was the 

best at differing blackspots from low-frequency segments and identified a set with 

the highest average number of incidents per km and the highest quota of number of 

incidents/total length.  

The identified blackspots for roe deer are mostly in south of Sweden, as com-

pared to moose where blackspots were found across the entire country. This reflects 

the geographical distribution of the two species (Svenska Jägareförbundet, 2016, 

2015). The top ten blackspots for moose are in similar geographical areas between 

all four sets, but both position and the given rank differed between the different 

limits. This marks the importance of the appropriate choice of ranking criteria as it 

can have large impact on the final choice of segments.  

Previous methods to identify blackspots of wildlife collisions on roads are based 

on spatial points and cluster analyses, and this is not possible for this data. Instead 

we used an index of reoccurring high number of incidents as a measure of intensity 

to define blackspots. This index is based on the relative intensity of incidents for all 

segments in a year. The method developed in this report is easily repeated, the chal-

lenge is setting a limit to identify a desirable number of blackspots. One should be 

aware that these blackspots do not have a rigorous definition about which measure-

ments to incorporate which gives them a flexibility. One of the difficulties of this 

and similar studies is therefore identifying which criteria should be used to delineate 

and rank blackspots. In the end, the needed criteria will differ depending on who is 

4 Discussion 
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asking the question. The flexibility is therefore important, and equally important is 

the reason for including different criteria. 

The AUC-value increases with a higher set percentile for defining blackspots, 

and a higher set limit increases the model’s ability to differentiate between blackspot 

and defined low-frequency segments. The shape of the curves of the ROC-plots also 

indicate that the models are increasingly better at separating defined blackspot from 

low-frequency segments. The top three sets of blackspots for moose have similar 

AUC-values. This indicates that the explanatory variables couldn’t get better at dis-

criminating between the two different outcomes even when choosing a higher limit. 

An alternative way of identifying blackspots would therefore be based on the posi-

tion where the AUC levels out. Further studies could investigate the AUC for a 

larger number of sets of blackspots, ranging from 0 years above the limit up to all 

available years to assess where the AUC-value levels out and eventually decline. 

An important factor to incorporate in such a study is the difference in number of 

blackspots, as running a model on too few dependent variables will give uncertain 

results (Peduzzi et al., 1996). This suggested method relies on the assumption that a 

major part of the explanatory variables that truly impact the probability of a black-

spot have been identified. Otherwise, the AUC will not truly level out at a limit 

which indicates the “true” blackspots. 

Interpreting the included explanatory variables should be done with caution as 

the available data extrapolated from ArcGIS as well as the reported incidents often 

had low resolution regarding geographical precision. Few explanatory variables 

were included in the final models for roe deer. This could be an effect of both the 

low resolution and the possibility that I have not succeeded in incorporating the 

explanatory variables which are important for roe deer. Snow was the only variable 

included in all final models. Many of the segments defined to have low-frequency 

of incidents for roe deer were in the northern half of Sweden. I therefore believe that 

the relationship with snow shows the increase of snow with increasing latitude ra-

ther than an impact on the probability of a blackspot. For future analysis, the ex-

planatory variables could also include more categories of open land, such as agri-

cultural habitat, which is known to increase the presence of roe deer (Brown, 2012). 

It would also be interesting to include the difference in population size depending 

on geographical location in the analysis.  

The final explanatory variables for moose are similar to those identified in pre-

vious reports (Rolandsen et al., 2015; Seiler et al., 2011). Fen had the highest pa-

rameter estimate which indicates its importance for presence of moose, which is 

similar to earlier research (Kuijper et al., 2016). The negative effect of powerlines 

as well as of roads is in opposite to what I expected. For roads, a possible explana-

tion is that the presence of roads in close vicinity to railroads could work as a deter-
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ring mechanism for moose rather than funnelling them up on the railroad. The pres-

ence of powerlines could be an indicator of more human settlements, decreasing the 

probability of moose in the area (Torres et al., 2011). However, it could also indicate 

that the powerlines are attractive to moose and therefore they spend less time in 

close vicinity to the railroad. Powerlines are sometimes used to plant species that 

moose prefer as forage (Bergqvist and Bergström, n.d.; Henningsson, 2013; Sveri-

ges Radio, 2003). Powerlines, or rather the powerline segments, might therefore 

even work as a mitigating effort for TWCs.  

Earlier studies have used predictive modelling to understand where incidents oc-

cur at a higher rate (Gundersen and Andreassen, 1998; KušTa et al., 2014). Predic-

tive modelling is an important tool as it can suggest mechanisms that can explain 

the occurrence of blackspots. This allows an understanding of how blackspots will 

develop with changes in the landscape as well as climate change. 

As the TWCs are reported on segments and not with coordinates, there will be 

some difficulties when positioning mitigation measures to reduce TWCs. Prefera-

bly, the reporting system should be updated so that there is a higher geographical 

precision of where the TWCs occur and with a higher accuracy regarding the species 

and type of incident reported in the database. Since the number of years included in 

the database will continue to grow the appropriate number of years above the limit 

will have to be revised.  

4.1 Conclusion 

I have developed a method to identify blackspots with repeatedly high numbers of 

incidents. By automating the process, it could offer a tool for different interested 

parties. The decision of which limit to use and what measures to include for the 

ranking might require more elaboration, but the main way of thinking and important 

questions to answer when dealing with repeatedly high numbers of incidents on rail-

roads have been identified.  
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